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NASA TT F-14,367

THERMAL CAPACITfY9 FOA Ip 1WITH A TOROIDAL'

5 F PLASMA INCLUSION1

sR.. Krichehl cHerD rnes TIndEG. Schmitz2

1o - ABSTRACT. A model theory is emonstrated to determine the
- load capacity of -a wall enclosing an electric arc. The

_- theory is based on exact numerical computations of the
- temperature distribution inside the wall of a toroidal arc
_ tube. rIt is shown and explained that the thermal load

15 _ capacity increases with the radius of curvature with
_ fixed tube radius and decreases with tube radius at a
_ fixed radius of curvature.

20 1. Introduction Cover Pa e Source_1. Introduction

An electric arc at a pressure of 1 atmosphere in a toroidal gas-impermeable /13*

-tube with circular cross section 'is the object of the following study, which

25 deals with its heat transmission in the all as well as the maximum thermal

-resistance of the wall. The infuity modtel from plasma physics [i4]-

Fis used for the theoretical study of the phenomeon in the arc column as well
30 s the arc wall.. In conjunction with the special boundary conditions for the

torus problem, the equations in this theory offer not only relationships

etween thermal and electrical arc parameters [2], but also offer the possibility

35 _f expressing the maximum wall stress a a function of tube parameters and the

_thermal properties of the wall material. In this connection, it is always

Lassumed that the ratio of the arc cross sectional radius to the torus radius

can be very small. In such a "slightly curved arc" the asymmetry of the /14
40 eigenmagnetic forces is small, so that the enthalpy product term is not

involved in the power balance.

45 -1Excerpt from dissertation of Mr. Krichel submitted for the degree of Doctor
'of Natural Sciences at the Mathematics and Natural Science Faculty of the
fRhineland-Westphalian Technical College, Aachen. Date of graduation: 10 JulyO
1970. 
2First Physical Institute of the Aachen jTechnical College.

50 *Numbers in the margin indicateCfa!ginat-ioenSinlr-the foreign text.
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2. Torus Arc With Cooling Mechanism

To study the problem ~at han~a-es al0itproceed on the basis of a torus

with circular cross section, into which a narrow insulator with electrodes

mounted on both sides has been inser rtPd e eflAarc burns in the gas-filled torus

-from one electrode to the other. Figure 1 shows a torus arc element with

radius of curvature R, with the skeleton and energy fluxes inside and outside

-the wall in cross section, with a being the internal radius of the tube and d

the wall thickness. The outer skin of the arc is maintained by a liquid or

-gaseous coolant at an external temperature Tk remains constant with time on

the average. The temperature T
w

on the inner wall of the arc is determined by

-the outer wall temperature and the geometrical parameter. The total current

strength, maximum arc temperature or electrical power per unit length can also
Cover Pacte Source

be used as further determining parameters.

The coordinates employed are the

p6lar angle P in the direction of the

skeleton, [the normalized tube radius

p = r/a as well as the azimuth angle

in the tube-cross sectional area p.

_dR r In a torus arc, as in a straight

cylindrical arc, 2 different cooling

T 0 1sk .mechanisms may be involved [5]. The

coolant, e.g., nitrogen gas, may be

, ......._ -. blown through the wall radially from

- Figure 1. Torus Arc Geometry outside. This case, in which thermal

-With Skeleton and Energy convection as well as radiation and
- Fluxes In the Wall.
- heat conduction play 'an important

_role in the cooling process, will not be discussed in greater detail here,

since we are studying a torus without internal influx of gas. The other case

_is the one without influx, in which cooling proceeds solely on the basis of

-thermal conduction and radiation of heat.

- The temperature created in the outer skin depends on the one hand on the
NA SA

thermal. and radiated power given off at the wall and on the other hand on the
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-thermal transportability_lof the coolant. The internal wall temperature, due

to the danger of vaporization and meltingToftthe wall material, has imposed
rage ungutIIe

5-upon it an upper limit which cannot be exceeded.

Under the assumption that iheeinternarl'iWAl temperature is within the

aboveimentionedJ boundary temperature and enthalpy production is stationary in

10 -the arc, the power conversion can be described by the following equations:

P el w + Prad

15L Qw+ Prad = Qk
'

The first equation expresses the fact that the\electrical power introduced

-from outside per unit length Pel is converted to the heat flux per unit length

20 0 and the radiated power per unitelength - Pourcat the wall (Figure 1). The
-Qw th i rad

-second equation describes the special nature of the cooling mechanism employed.

All of the energy absorbed by the inner Iwall is transmitted in the outer wall

-to the coolant by the heat flux per unit length25
-3. Mpdel Theory For Determination of the Maximu Wal'l Strength..

As has already been discussed in c nsiderablje detail in [2], the power

30 balance in the arc wall has the form

- a o +--
p,_ .C DS fo a a a s

a -+pcoscp P P P t A(3.1)

35 - , sin o I aS I 028 
- u ] R . -+. P+ a T + -p0:_ ---~' + pcos{0 :

40 -This equation differs from that of the arc only in that the production term
of the electrical energy as well as the radiation term are absent. The power /16

balance cannot be solved afialytically. IFor each solid but arbitrary angle

and with disregard of the azimuthal dependence of the heat flux potential for

5this angle, however, there is an equation which may be solved analytically

randta:s a comparison with the exact numerical solution of (3.1) for this angle

[shows] indicates relatively well the curve of the heat flux potential in this

[yoint in the wall. We are selecting le ' = i especially because in this

E~Li~~~~ .-- 3
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case, due to the curvature of the arc, there is maximum thermal stress. The
I'·-heat flux potential in the wall 5fgthentoTs's with a radius of. curvature R,J

tube radius a, wall thickness d and energy flux density "jE('P' w) in the inner

wall and the heat flux potentialoS-rifiatheTuter skin will then be determined

with he= i by the following:

I.

S(p, 7)-Sk I
aji(t, r) a

1+

R- (1-R)

(3.2)!

-This formula, for large radii of curvature R, is converted to the already

'familiar logarithmic distribution of the cylindrically symmetrical, wall-
Cover Pacje Source

--stabilized. flow-free arc with constant wall temperature [4]. The degree to

which this analytical distribution is in good agreement with that which was

-calculated numerically is evident from Figure 2, where the same numerical wall

-distribution as in Figure 3 for p = Tr is compared on an enlarged scale with

th-at determined according to (3.2). The nuerically cTlcuted-distribution -

is located above the model solution due to consideration of azimuthal thermal

R = 14cm
S p)-SK a 1cm

a-). Ew :0.018 Wcm'! Grad
'
t

SK 6.6 W/cm

-numerical calc
~ _---- model theory

,,,.:,;, X -

; -4\

ulation L

-' 1.0 1.1 1.2 1.3

_, _r- gt- . Wt

ment regarding the maximum thermal stress

Roman

Figure 2. Comparison of Numerically
Normalized Distribution of Heat Flux
Potential and the Value Obtained By
Means of A Model Theory In A Quartz
Wall With p =': .

Due to the good agreement

between the numerical distribution

and the model theory, it is per-

missible to draw further important

conclusions from the model theory.

Relationship (3.2) now offers

the possibility of making a state-

on the wall. By this webmean the
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value of the maximum energy flux density jE miix ( 1i , ) in the inner wall of the

-torus with p = r. Due to the azimuthhaildepefidence on p caused by the curvature'

5 -n this instance we cannot use the converted electrical power per arc length

el a descrip - P . integral! value,-Pel as a descriptive value for theewal'l~strength. Pel,.as an integral value,
is only equivalent to jE max in a straight cylindrical arc with constant

-external wall temperature, since in this case jE max is independent of the

azimuthal angle P due to rotational symmetry.

If the heat flux potential at

.T[0KI1 5s[wcm-1 the melting point of the specific

15, < 160 wall material is introduced into

00 / -140\ .I(3.2) for S on the inner wall, the

X l / -6000 t1 20 \ X solution for jE will give the

20 oo Smaximum permissible energy flux

4000 \ \ X density in the wall at the pbint /18

2 / 2000 0 4 1

/20 o (- TO
-

1.2 1.0 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1.0 1.2 1 ( R ) ( __0 a)

30 n.a
Figure 3. Temperature Distribution ' (3.3)

(Solid Curve) and Heat Flux Potential
(Dashed Curve) In A.Torus Arc With In this equation the difference

_ Quartz Wall Along Axis C = 0, W between the heat flux potential at
35 (R = 14 cm, a-= 1 cm, k 0,008 Wcm-1

degree, TA = 8,00 , b = 138, 415, the melting point and at the tem-degree'TA 2 8,OOO"K, b 138, 415,
-S(1, ) = 0.1867 exp(62/b) W -1). perature of the coolant Ss(1, ~) - Sk

cm is given in good approximation by

40 k(T
s

- Tk). Here k is the thermal conductivity of the wall material averaged

-over the temperature. The thermal wall strength at ' = ¶ is therefore dependen

_on the wall thickness d, the difference between the melting point T s
of the

45 wall material and the coolant temperature Tk, the torus radius a and the radius /19

-of curvature R. Since the point p = fr must withstand the maximum heat stress

Ldue to the displacement of the arc, (3.3) allows determination of the maximum

_wall strength in general. For R tendi.ngAtoward.infinity, this relationship

-becomes that of the straight cylindrical arc.

Even Roman Odd ~~~~~~~~-5
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TABLE. MELTING POINT T , AVERAGE THERMAL CONDUCTIVITY

AND NORMALIZED THERMIeSTRESS k(Ts - T) FOR VARIOUS 

WALL MATERIALS. THE VALUES a) CORRESPOND TO A TEMPERATURE OFj
T = 00°K, THE VALUES, b)C60RRE$SONDTTQ1A TEMPERATURE OF T = 7000K,

c) CORRESPONDS TO A TEMPERATURE OF 2,4000K.

I I.(CJ JE' I-,11: Cal To [' !],, * [ af- In -, w W

1aIR

Tk=300K Tk = 700K ,

Metal .
Cu (99,9%) a) 0,951 1083 a) 4,203 ' - '

Ag(99,9%) a) 0,999 961,3 a) 3,907
j Al a) 0,569 659 a) 1,505
_ Fe. a) 0,173 i536 a) 1,092 . - *

_Ni " a) 0,161 1455, a) 0,962 -
b) 0,125 b) 0,747 b): 0,538 .

W b) 0,3 3390 b) 4,223 b) 3,720
c) 0,35 c) 4,926 / c) 4,341

-Fe a) 0,174 1535 . a) 1,098 
_ (Armco) b) 0,117 b) 0,738 b) 0,543 i

_ Nonmetal . -,
Nm C a) 0,403 3800 a) 6,364

b) 0,242 . b) 3,822 b) 3,416
Quartz gla a) 0,003 1470 a) 0,018 . -

b) 0,004 b) 0,024 b) 0,017

As we can see from (3.3), the stress will increase as the average thermal

conductivity of the wall k and the temperature differential between the

-melting point and the coolant temperature increase and the wall thickness

_decreases. These findings become immediately understandable if we recall that

the wall is able to give off per unit time an amount of heat which increases

_with increasing average thermal conductivity and increasing temperature gradien

-across the wall.

-- In order to study the dependents of the maximum energy flux across the

_wall on the curvature, we have plotted E max as a parameter in Figure 4 for a

quartz wall as a function of the radius of curvature for 3 different tube

_radii. lnA A
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121 --

2|- I.,L / j SK = 0.25cm

113 

I109 ,

1105

o01

97

93 

,89 / a 2cm

Fr 4T85h d Ma.3cm
Xw = 0.018 Wcm' Grad-'

81 SK = 6.6W/cm
977~ . / Ts = 1748 0 K

'75
2 4 6 8 1012 14 16 1E

. ..: R [cm]-

Figure 4. The Maximum Possible
Energy Flux Density In the Wall
In the Case of Quartz As A
Function of Radius of Curvature
For 3 Different Tube Radii.

- - - IEMAX.

Figure 5. Diagram Showing the
Dependence of the Maximum Energ)
Flux Density At P = r On the Wa
Curvature.

qualitative dependence of the maxim

Even
Even

All of the curves show unquestionab

.e Onathatthe maximum wall stress curvature 

with decreasing curvature, i.e., with

r Pa increasing radius of curvature.

This behavior is explained by Figure 5.

The energy flux density which strikes

the inner wall of the torus must be

removed at a smaller radius of curvature

R
2
through a smaller outer surface of th

wall element. However, since a smaller

outer surface can be subjected to less

of a load, the maximum energy flux

r Padrensci:tycc0for large curvatures will be

less than for small ones. From this

fact, an important physical conclusion

Which applies to the construction of
I I

_ light_ar.csL/f il lows,_name1ly, maximum

thermal strength of a straight light

arc is always greater than that for a

toroidal one.

As we can see from Figure 5, for a

fixed radius of curvature JE max can

assume values that increase as the

selected tube radius decreases. From

figure 6 we can see this state of affair

as seen from a physically qualitative

standpoint. The smaller the tube radius

the wall thickness remaining the same,

Y I11 the larger the outer surface of the

wall element under consideration for

removal of the energy flux. This

mum energy flux density on the tube radiusmum~u N~ ......

]~~~~~-
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is not specific for a torus. It is also

eylindrical arcs. Page One

- . I - ---.

Cover Pac

I~~~~~~~~~~~~~~'jEMAX

.. GI.

- Figure 6. Diagram Showing the
- Dependence of the Maximum Energy
- Flux Density At o = X On the Tube
- Radius.

Cover Pa

be more advantageous than a cylindrical

high current. In this case, the energy

arc become so high that the toroidal arc

satisfactory despite the lower thermal s-

- I would like to thank Professor Sc]

Truitful discussions.

found in the case of straight

Title

4. Conclusions
e Title

In view of its thermal strength,

the toroidal arc with electrodes is

less satisfactory than a straight arc.

The situation remains the same if, as

in the case of a cylindrical transpir-

ation arc, an attempt is made to

influence the radial heat loss through

a radial influx of gas. A toroidal

arcowithout electrodes can therefore

Irc only if it is operated at a very

losses at the electrodes of a cylindrical

without electrodes becomes more

trength. 4 |
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